1. Exercise 7.10 of the CC Book: Let \(\text{match} \) be the function that accepts a \(3m \)-bit string \(x \) and an \(m \)-bit string \(y \) and returns 1 iff \(y \) is a substring of \(x \). Prove that \(D^\text{best}(\text{match}) = \Omega(m) \).

2. Exercise 7.11 of the CC Book: Let \(\text{sum}(a, b, i) \) be the function that takes two \(n \)-bit integers \(a, b \) and a \(\log n \)-bit integer \(i \) and returns the \(i \)-th bit of the binary representation of the sum \(a + b \) (the length of the input is \(m = 2n + \log n \)). Similarly, let \(\text{prod}(a, b, i) \) be the function that takes the same inputs and returns the \(i \)-th bit of the product \(a \cdot b \). Prove

 1. \(D^\text{best}(\text{sum}) = O(\log m) \); but
 2. \(D^\text{best}(\text{prod}) = \Omega(m / \log m) \).

3. Exercise 12.6 of the CC Book: In this exercise we are concerned with finite automata. Those are similar to Turing machines but they have only an input tape (and no read/write tapes) and the head is only allowed to move one cell to the right at each step. It is well known that any nondeterministic automaton with \(k \) states can be transformed into a deterministic one that has \(2^k \) states. For some constant, consider the (finite) language

 \[L_c = \{ ww \mid w \in \{0, 1\}^c \}. \]

 (1) Prove that there is a co-nondeterministic automaton with \(O(c) \) states that accepts the language \(L_c \). (2) Use communication complexity to prove that any deterministic automaton that accepts the language \(L_c \) requires at least \(2^c \) states. Conclude that the above-mentioned transformation from deterministic automata to nondeterministic automata is optimal.